
Parallel Programming Models: A Systematic
Survey

Chougule Meenal D1, Gutte Prashant H2
1,2PG Student Information Technology Department,

 Walchand College of Engineering, Maharashtra, India

Abstract— This paper presents all parallel programming
models available today. It reviews shared and distributed
memory approaches. Hybrid programming models are also
playing important role in High Performance Computing
(HPC) era. This makes best use of both shared and distributed
approaches. The study shows multi-core CPU’s have given
different impulse to shared memory model programming.
Along with this, heterogeneous programming is explored, to
exploit combined effects of CPUs and Graphics Processing
Units (GPUs) Graphics Processing. This work introduces the
contribution of Open standards such as Open Multi
Processing (OpenMP), Message Passing Interface (MPI), Open
Computing Language (OpenCL), Open Computer Vision
(OpenCV) and OpenACC in parallel computing. This survey
is accomplished with study of different programming
languages according to parallel models.

Keywords— Parallel Models, distributed programming,
CUDA, openMP, GPU, OpenCV.

I. INTRODUCTION

Earlier microprocessors brought giga (billion) floating-
point operations per second (GFLOPS) to the desktop and
hundreds of GFLOPS to cluster servers. But this trend has
slowed since 2003 due to energy consumption and heat-
dissipation issues [1]. This caused limitation on increase in
CPU clock frequency. To overcome this problem a new
design of processor came into picture termed as multi-core.
In multi-core systems, two or more computing units are
integrated on to a single microprocessor. Multi-core
systems maintain execution speed while increasing number
of cores. In contrast to this Many-core system having
thousand numbers of cores tries to increase the throughput.

Initially all software applications are basically follow
sequential execution flow. The program execution flow was
first described by Von Neumann. The sequential execution
models uses single core at a time but, this idea is not
suitable today. So, the applications that can benefit from
performance increases with each generation of new multi-
core and many-core processors are the parallel ones [2].
Thus, parallel programming became most efficient way to
improve performance of applications and most promising
way to use underlying hardware.

Developing a parallel program involves dividing the
program i.e. set of instructions into different subtasks.
These subtasks are executed independently on different
cores. Communication between tasks is carried if and
whenever required. After completion of execution results
are collected. There are various design patterns described to
achieve parallelism. They differ in the achievable
application performance and ease of parallelization. This
paper defines different parallel programming models in

section 1. Brief study and explanation of these models
along with programming language is given in section 2, 3
and 4. Final section concludes the work.

II. PARALLEL PROGRAMMING MODELS

Throughout the years, there has been many
number of parallel programming models proposed. Strictly
speaking, a parallel programming model is an abstraction of
the computer system architecture [3]. Parallel programming
models and its associated implementations, i.e., the parallel
programming environments defined by Mattson et al. [3].
Prominently, while building HPC applications, two main
programming models are followed: a) OpenMP used in
shared memory architecture, other is MPI used in
distributed memory systems. These two models are termed
as Pure Parallel Models [2].
 Many-core processor architecture became so
famous now-a-days called as GPU’s. To exploit parallelism
in such architecture Heterogeneous parallel programming is
used. PGAS is another such variant of model which
logically partitions global address space to use locality of
reference. Hybrid models combine all of the above models
into one.

Fig.1 Comparison of programming Models

A. Pure Parallel Programming Models

As mentioned in the previous section pure models
broadly divided into two types: Shared Memory Model and
Distributed Memory model. These models are implemented
using threads i.e. Portable Operating System Interface
(POSIX) threads, OpenMP and MPI. Intel provides Thread
Building Block (TBB), a C++ template library which is
specially designed for utilizing multi-core architecture.
Table 1, explains difference of pure parallel programming
implementations.

1) POSIX Threads
POSIX threads are usually termed as Pthreads. In

this programming structure two or more threads are used
and manipulated independently. Each thread in execution
has its own stack pointer, registers, scheduling properties
and thread specific data. In UNIX threads are lightweight
processes which are easy to manage and control. In 1995 a

Chougule Meenal D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5268-5271

www.ijcsit.com 5268

standard was released [4]: the POSIX.1c, Threads
extensions (IEEE Std 1003.1c-1995), or as it is usually
called Pthreads.

Fig 2: CUDA Memory Model

These Pthreads are implemented using a header or

library (Pthread.h). This library is used for creating and
destroying threads. Some functions are also useful to co-
ordinate thread activities using locks, mutex, critical
sections, Semaphore and some conditional variables. This
model is especially appropriate for the fork/join parallel
programming pattern [3].

In this model heap memory which is dynamically
allocated and global variables are shared among all threads.
So, when multiple threads access the shared data,
programmers have to be aware of race conditions and
deadlocks.

 Pthread model is not well structured, is not
recommended as a general purpose parallel program
development technology. The most important thing to
mention is that, number of threads are not directly related to
number to processor cores. So, scalable application
development is difficult in this model.

2) Shared Memory Model with OpenMP

As mentioned above task level parallelism is achieved
in shared memory architecture using OpenMP. OpenMP is
open standard Application programming interface (API)
which supports shared memory multiprocessing
programming. It is available in C, C++ and Fortran. Its
current stable release is OpenMP 4.0 on July 23, 2013.

OpenMP and Pthread both are multithreaded
programming libraries but, they differ with each other.
Pthreads is purely implemented as a library, OpenMP is
implemented as a combination of a set of compiler
directives, pragmas, and a runtime providing both
management of the thread pool and a set of library routines
[2].The OpenMP model is highly structured and designed
for HPC applications.

OpenMP is portable across the shared memory
architecture. Workload partitioning and task-to-worker
mapping require a relatively few programming effort.
Programmers just need to specify compiler directives to

denote a parallel region. OpenMP is specially suited for the
loop parallel program structure pattern, although the SPMD
and fork/join patterns also benefit from this programming
environment.

3) Distributed Memory Model with MPI

MPI is a specification for message passing
operations which is a natural way of communication in
distributed memory architecture.

Originally, MPI was designed for distributed memory
architectures, which were becoming increasingly popular at
that time (1980s - early 1990s). This library is available in
C, C++, Fortran and Java. Some of the well known MPI
implementations are OpenMPI, MVAPICH, MPICH,
GridMPI, LAM/MPI, and MRMPI. Message Passing is a
parallel programming model where communication
between processes is done by interchanging messages. This
is a natural model for a distributed memory system.

Each working element is called as process. Workload
partitioning and task mapping have to be done by
programmers, similar to Pthread. Programmers have to
manage what tasks to be computed by each process. In this
model, the processes executed in parallel have separate
memory address spaces. Communication occurs when part
of the address space of one process is copied into the
address space of another process. MPI operations are
broadly classified into two types, point to point and
collective operation.

When Java first appeared there was immediate interest
in its possible uses for parallel computing, and there was a
little explosion of MPI and PVM “bindings” for Java. MPJ
Express is an open source Java message passing library that
allows application developers to write and execute parallel
applications for multi-core processors and compute
clusters/clouds. MPICHG2 and GridMPI are used for MPI
implementations in grid environment. MPI is basically
useful for task-parallel computations and for applications
where the data structures are dynamic, such as unstructured
mesh computations.

B. Heterogeneous Parallel Programming Models

Today’s computer systems are having one or more
CPU’s and one or more GPU’s.

Fig 3: No. Of Hits in Scopus database

Chougule Meenal D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5268-5271

www.ijcsit.com 5269

In 2003 the Siggraph/Eurographics Graphics
Hardware workshop, held in San Diego, showed a shift
from graphics to non-graphics applications of the GPUs [5].
Then everyone came to know that, GPU’s can be used for
general purpose and scientific applications.

As mentioned earlier GPU’s mainly designed for
throughput oriented applications. GeForce, Tegra, Tesla,
Quadro are the GPU’s provided by NVIDIA.

An APU is an Accelerated Processing Unit which
integrates the CPU (multi-core) and a GPU on the same die.
To implement application on such architecture Brook [6]
and cg [7] languages are used. Then NVIDIA introduced
Compute Unified Device Architecture (CUDA) for doing
parallel programs [8].

 To support many-core architecture Intel provides
Array Building Block (ArrBB), a C++ library. Its stable
release is in August 2011[9] and Direct Compute [9] is an
API also supports many-core architectures. There are API’s
available as an Open standard like OpenCL, OpenCV, and
OpenACC which are also useful.

1) CUDA

The computation of tasks is done in GPU by a set
of threads that run in parallel. The GPU architecture for
threads consists of two-level hierarchy, namely block and
grid. Block is a set of tightly coupled threads where each
thread is identified by a thread ID, while grid is a set of
loosely coupled of blocks with similar size and dimension
[3].A CUDA program consists of one or more phases that
are executed on either the host (CPU) or a device such as a
GPU [1].
 Worker management in CUDA is done implicitly.
Programmers do not manage thread creations and destruc
tions. They only specify the dimension of the grid and
block required to process a certain task. But, workload
partitioning and worker mapping in CUDA is done
explicitly. Programmers have to define the workload to be
run in parallel by using the function “Global Function” and
specifying the dimension and size of the grid and of each
block. [2] The stable release of CUDA is CUDA 6.0 on
November 2013. The CUDA memory model is given in Fig
2.

2) Direct Compute:

DirectCompute is Microsoft’s API which is used
for GPU programming [10]. It is also known as DirectX11
Compute Shader. It was initially released with the DirectX
11 API, but runs on both DirectX 10 and DirectX 11
graphics processing units. In particular, it was introduced
thanks to the new Shader Model 5 provided in DirectX 11,
which allows computation independently of the graphic
pipeline, therefore suitable for GPGPUs. The advantage of
DirectCompute is that, it supports only in windows
platform.

3) OpenCL, OpenCV and OpenACC

OpenCL is Open Computing Language. OpenCL is first
free cross-platform standard for heterogeneous parallel
computing. OpenCL 2.0 is the latest significant evolution of

OpenCL standard, designed to further simplify cross-
platform programming while enabling a rich range of
algorithms and programming patterns to be easily
accelerated [11].

OpenCV was designed for computational efficiency and
with a strong focus on real-time applications. It has C/C++,
Python, Java interfaces and written in C++. OpenACC is a
programming standard designed to simplify parallel
programming of heterogeneous CPU/GPU systems. It is
having collection of compiler directives to be offloaded
from host CPU to an accelerator.

C. Hybrid Parallel Programming Model

This programming model is a modern software
trend for the current hybrid hardware architectures [2].The
idea behind this is, use message passing over distributed
nodes and shared memory within single node. To do this
one can use above mentioned standard and API’s. CUDA,
OpenCL and OpenACC can be used to implement multi
CPU and multi GPU programming. OpenMP or Pthreads
and MPI can also be combined to exploit shared and
distributed memory models.

Combining CUDA and MPI is useful for
parallelizing programs in GPU clusters. MPI is used to
control the application, the communication between nodes,
the data schedule, and the interaction with the CPU.
Meanwhile, CUDA is used to compute the tasks in the GPU
[12], [13].

III. CONCLUSIONS

This paper mainly reviews different parallel programming
models. From study it is seen that, there is vast change in
processor architecture since last ten years. . The improvised
and new processor systems tend to use different models and
API’s. GPGPU’s are becoming most promising systems for
high performance computing. The increasing significance
of parallelism in the computational field can be mapped on
computing literature over the last decade. Thus, Fig. 3
represents the number of hits in the Scopus database [14]
for some keywords: MPI, OpenMP, CUDA, OpenCL and
OpenCV.

By referring to the above chart we can see that, MPI is
the oldest and most widely used distributed programming
model. CUDA changed the meaning of parallel computing
drastically over the year from 2009 till now. Open standard
industries are also contributing major share in parallelism.
OpenCL, OpenACC are new bees in this area but playing
good role. OpenCV is also showing its results so its use is
increasing per year.

REFERENCES
[1] D. Kirk and W. Hwu, Programming Massively Parallel Processors: A

Hands-on Approach. Morgan Kaufmann, 2010.
[2] Javier Diaz, Camelia Mun˜oz-Caro, and Alfonso Nin˜o, “A Survey of

Parallel Programming Models and Tools in the Multi and Many-Core
Era” IEEE Tranc. On Parallel and Distributed Systems, Vol. 23, No.
8, August 2012

[3] T.G. Mattson, B.A. Sanders, and B. Massingill, Patterns for Parallel
Programming. Addison-Wesley Professional, 2005.

[4] POSIX1003.1FAQ,http://www.opengroup.org/austin/papers/posix_fa
q.html, Oct. 2011.

Chougule Meenal D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5268-5271

www.ijcsit.com 5270

[5] M. Macedonia, “The GPU Enters Computing’s
Mainstream,”Computer, vol. 36, no.10, pp. 106-108, Oct. 2003.

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.
Houston,and P. Hanrahan, “Brook for GPUs: Stream Computing
onGraphics Hardware,” Proc. SIGGRAPH, 2004.

[7] W.R. Mark, R.S. Glanville, K. Akeley, M.J. Kilgard, “Cg: A System
for Programming Graphics Hardware in a C-Like Language,”Proc.
SIGGRAPH, 2003.

[8] CUDAZone, http://www.nvidia.com/object/cuda_home_new.html,
Oct. 2011.

[9] MicrosoftDirectXDeveloper Center,http://msdn.microsoft.com/en-
us/directx/default, Oct. 2011.

[10] P.B. Hansen, Studies in Computational Science: Parallel
Programming Paradigms. Prentice-Hall, 1995.

[11] Khronos Group, http://www.khronos.org/opencl, Jan, 2014
[12] Q. Chen and J. Zhang, “A Stream Processor Cluster Architecture

Model with the Hybrid Technology of MPI and CUDA,” Proc. First
Int’l Conf. Information Science and Eng. (ICISE ’09), 2009.

[13] J.C. Phillips, J.E. Stone, and K. Schulten, “Adapting a Message-
Driven Parallel Application to GPU-Accelerated Clusters,” Proc.
ACM/IEEE Conf. Supercomputing, 2008.

[14] http://www.scopus.com Jan 2014

Chougule Meenal D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5268-5271

www.ijcsit.com 5271

